
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This is an interesting manuscript that describes observations on the association of ageing, caloric 

restriction and patterns of DNA methylation. The work is novel and of wide interest.  

 

In review, the major issue with the work is related to the fact that the entirety of the observations 

and associations presented are cross-sectional. That is, it is not possible to truly show that the 

changes observed are causally related to age or caloric restriction without actually following the 

animals/people over time. This is an important limitation that must be acknowledged. Prospective 

studies are needed.  

 

A puzzling part of the work presented here has to do with the relationship of ‘age-related 

epigenetic drift’ with calculated ‘methylation age’, and methylation as a reflection of cellular 

mitosis (which is loosely associated with age). Since tissues and tissue stem cells have well known 

and strikingly different mitotic rates, methylation age cannot reflect the process of mitosis (in fact, 

the metric for methylation age was developed to be tissue independent, making reflecting mitosis 

impossible). It is not clear that epigenetic drift is at all similar, yet the data presented here would 

suggest that the rates of drift correlate with age. While the authors suggest that they may be 

measuring an effect related to stem cells (“stem cell plasticity”) this would require either that the 

loci they interrogate are stem cell specific (i.e. not confounded by somatic changes) or that any 

drift that occurs in mitotically active somatic cells is profoundly different. One assumes that they 

are actually measuring methylation that reflects both changes that are of stem cell origin and 

methylation that is somatically acquired – how can they be distinguished? This is mechanistically 

puzzling; clearly epigenetic drift is different in its origin from methylation age. Further complicating 

this is the work suggesting that stem cell divisions and mutations are the main drivers of cancer. It 

would be helpful if the authors could add to their discussion these somewhat subtle ideas and 

address their data and its relationship to stem cell changes as well as non-stem cell changes, 

attempting to harmonize these somewhat orthogonal ideas.  

 

On additional issue is related to the possibility that tissue variation and diversity is related to 

caloric restriction (CR). CR related changes in the immune response would alter DNA methylation 

profile in blood, potentially acting as a confounder of the blood data presented here. Similarly, CR 

associated differences in histology/pathology (e.g. immune infiltration, tissue or cell-type changes 

in apoptosis, amount and distribution of brown vs. white fat, efficacy of digestions, constitutive 

alterations in metabolism in tissues, etc., etc.) may result in potential confounding methylation 

profiles that would be difficult or impossible to assess and control. As noted below, I am concerned 

that this potential source of confounding has not been dealt with adequately.  

 

The examination of expression shows a limited, but significant, association of expression with drift, 

using data from the literature. While interesting, why did the authors not actually use the actual 

samples to study expression? Direct interrogation would seem preferable.  

 

Assuming that the differences in expression reported are real, do the authors suppose that this 

reflects a small number of cells with large differences in methylation as opposed to the action of 

the quite small changes in a large number of cells? Just how would they propose that these 

changes arise, given that this is supposed to be related to “drift”? One or two loci with differing 

methylation seems inadequate to change expression patterns as globally as is implied here.  

 

Specific issues:  

While the examination of the separated blood cell types alone is of interest, it is not clear how this 

work was actually done. The number of age-related methylation sites for whole blood differs for 

each cell subtype comparison; the reason for this is unclear. Further, as there are numerous 

different subtypes of “T cells”, the analysis of these cells is less compelling. It is known that the 



aging immune system changes in its character and composition and as a result one would expect 

this to affect the analysis. Using the limited data presented to assert that there is no confounding 

and then to ignore potential subtype effects is inadequate.  

 

In suppl Table 7 it would be useful to know how many genes were detected by prior work that 

were not detected by DREAM analysis in the current manuscript.  

 

Suppl Fig 3 could use some additional explanation of the numbers. For example, the denominators 

in each comparison appear to be the number of gene promoters with sequence data (I believe). If 

correct this should be in the legend. Is this all of the promoters with high quality data in each data 

set? It is difficult to actually understand how the genes are chosen for this analysis.  

 

The pyrosequencing data reporting methylation levels in newborns through elderly people is poorly 

presented. It is very difficult to actually figure out how many subjects were studied (Suppl Table 1) 

and there is no description of how these were chosen and were they come from that I can find. 

The statistical variability in the data used in this analysis is nowhere described (the mean is given 

but no SD). I also would be concerned about the possibility of additional confounding by cell type 

in this analysis; for example, early gestational age newborns have significant levels of CD71 

positive nRBCs that will have a unique methylation profile which is not controlled for in this 

analysis. The data shown for the linear extrapolation is not impressive; cell composition should be 

better accounted for in the analysis.  

 

p-values throughout the suppl data reflect false precision (there is no need to show p-values to 4-

5 significant figures) and the type of statistical test used is not stated (e.g. suppl fig 12, 13, 14, 

15, 16, 17).  

 

P3 line47 – a reference might be useful for the assertion that 80% of all CpG sites are 

methylated.  

 

P3 line 58 – similarly, a reference for epigenetic changes as “initiators” of cancer.  

 

Are there limitations to applications of DREAM across individuals related to SNPs? If so, how is this 

dealt with? This likely introduces issues in comparison across individuals.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors examine changing patterns of DNA methylation and their association with age from 

multiple species and tissues as well the effects of caloric restriction on methylation.  

 

1. While the conclusions drawn from their analysis are potentially exciting, I am concerned that 

the initial survey of methylation sites on which the rest is based is underpowered. The authors 

should consider a power calculation for the comparison of two binomial samples. The choice of p0 

and p1 could be based on numbers provided in lines of 84-85 of the manuscript. Selecting 

appropriate size and power for the tests is somewhat arbitrary but, the size of the test should 

account for multiple testing and alpha=10^-4 would be a minimal standard and alpha=10^-6 

would be adequate. Whether the authors aim for a higher powered study (power=0.8) or modest 

power (0.5), I believe that the calculation will speak for itself.  

 

2. The statistical methods applied to these are poorly described in places and misapplied in others. 

The authors compare methylation drift across species (lines 112-123). Calculation of the overlap 

between human and monkey sites is incomplete - the authors should construct the full 2x2 table 

(with human M+/M- on one margin and monkey M+/M-) on the other. It is not clear why the 

author believe the analysis is "confounded" and not clear how they derived the p-value.  



 

The authors make frequent use of hierarchical clustering to support their conclusions. There are 

many potential confounders that could cause samples to cluster together. The choice of animals 

and methylation sites used to address different questions is different for every analysis and it is 

difficult to evaluate where confounding might be a problem.  

 

The conclusions of the study are of great interest but the underlying logic for different comparisons 

is not clearly explained and can be confusing to follow.  

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

Maegawa and colleagues hypothesize that DNA methylation changes with age (methylation drift) 

are a determinant of lifespan. To test this they collect age, gene expression and DNA methylation 

data from mice, monkeys and humans. Some of the mice and monkeys had caloric restriction 

(CR), a known positive factor for lifespan. The authors have collected excellent data but 

unfortunately their statistical analysis has some major flaws:  

 

Age related methylation correlates with lifespan:  

They claim that the rate of methylation drift is associated with lifespan. However, their correlation 

of -0.99 comes from three data points. The two variables are (i) the log maximum lifespan of a 

mouse (~5yr), monkey (~70yr) and human (~100yr) (ii) the log of methylation rate in %/year. It 

is unclear to me where the longevity numbers come from. The latter number was derived by first 

collapsing 10 measures of methylation into an average, and then regressing methylation on age 

for each mouse, monkey and human. The authors should employ a random effect model to handle 

the 10 repeated measures of methylation within subjects, rather than getting the average across 

genes. More importantly, I would advise the conclusions regarding this association be tempered 

since the result is based on three observations and is thus speculative. It would be possible to fit 

one multilevel model including data from all 10 genes across all species, including species as a 

fixed effect with an interaction term for age allowed to give the difference in methylation rate 

between species.  

 

CR delays DNA methylation drift:  

The authors find CR is related to methylation drift using a two-stage process. For each CpG site, 

the authors first take the mean difference (across individuals) in methylation between CR and AL 

animals. They then find the change in methylation per year in AL animals and report the 

correlation between this and the average difference. It is unclear to me why the x-axis of Figure 3c 

is AL animals only, and not both. Further, the authors could have tested whether CR was related to 

methylation drift for each CpG site by a regression of methylation on age with an interaction for 

CR allowed. These regression results would provide p-values for each CpG site, which could be 

used to investigate which genes had differential methylation drift by CR group.  

 

The authors develop an age prediction model using data from AL mice/monkeys. They use this 

model to predict methylation age in CR mice/monkeys. Ignoring the low sample size this is a good 

idea. Unfortunately, they have set this up in the wrong direction or at least written their model 

incorrectly. They seem to set methylation as the outcome and age as the predictor variable, but 

are trying to predict age. For mice they find methylation=0.4*age + 13. From this I am not 

convinced by the authors’ methylation age estimates and subsequent findings of lower methylation 

age in CR animals.  

 

Age related methylation drift is conserved across species:  

The finding that CpG islands where methylation is low in early age tend to see hypermethylation 

with age, and that CpG islands where methylation is high in early age tend to see hypomethylation 



with age could be seen as regression to the mean. This needs to be discussed in more detail. 

Further, in the p-values for these differences over age (i.e. middle of page 4) come from a test 

which has not been mentioned in the methods section. Similarly, the tests regarding overlap of 

hypermethylated genes between species at the top of page 6 are not explained in the methods, 

but low p-values are found throughout.  

 

 

 

Reviewer #4 (Remarks to the Author):  

 

This paper presents epigenetic drift data from mice, monkeys and humans and concludes that it 

represents a biomarker of lifespan which is attenuated by CR.  

 

In the introduction, “lifestyle” is used twice (first sentence and last paragraph) to characterize CR. 

I don’t think it reflects a lifestyle for most organisms, including the mice and monkeys described in 

this paper. It would be better to keep the description as an “intervention”.  

 

Line 252: The lack of a CR effect on telomere length is described as “Strikingly”, but follows with a 

reference that reported the same lack of an effect. Thus, it doesn’t seem so striking.  

 

Line 285: It states that the monkey studies differed with the control diet, my understanding is that 

it was control and CR diet differences. Thus, the statement here may be an oversimplification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This is an interesting manuscript that describes observations on the association of aging, 

caloric restriction and patterns of DNA methylation. The work is novel and of wide interest. 

 

-Q1- 

In review, the major issue with the work is related to the fact that the entirety of the 

observations and associations presented are cross-sectional. That is, it is not possible to 

truly show that the changes observed are causally related to age or caloric restriction 

without actually following the animals/people over time. This is an important limitation that 

must be acknowledged. Prospective studies are needed. 

 

-A1- 

We agree that causation is difficult to prove and, as suggested by the reviewer, we now 

acknowledge the limitation of the cross-sectional assays in the discussion section. We note 

that, as a prospective study to support our cross-sectional data, we have analyzed intra-

individual changes of methylation status over time (5 years apart) in monkey peripheral 

blood mononuclear cells derived from four individuals (Suppl Fig.7) and found results 

consistent with age-related methylation changes, but the number of samples used is 

obviously too small to be conclusive.  

 

We modified the text on page 13 as shown below:  

“One of the limitations of this study is the reliance on cross-sectional samples. While we did 

observe methylation changes in a limited number of paired samples obtained from the 

same individual in the span of five years, longitudinal prospective studies are needed to 

confirm our observations.” 

 

-Q2- 

A puzzling part of the work presented here has to do with the relationship of ‘age-related 

epigenetic drift’ with calculated ‘methylation age’, and methylation as a reflection of cellular 

mitosis (which is loosely associated with age). Since tissues and tissue stem cells have well 

known and strikingly different mitotic rates, methylation age cannot reflect the process of 

mitosis (in fact, the metric for methylation age was developed to be tissue independent, 

making reflecting mitosis impossible). It is not clear that epigenetic drift is at all similar, yet 

the data presented here would suggest that the rates of drift correlate with age. While the 

authors suggest that they may be measuring an effect related to stem cells (“stem cell 

plasticity”) this would require either that the loci they interrogate are stem cell specific (i.e. 

not confounded by somatic changes) or that any drift that occurs in mitotically active 

somatic cells is profoundly different. One assumes that they are actually measuring 



methylation that reflects both changes that are of stem cell origin and methylation that is 

somatically acquired – how can they be distinguished? This is mechanistically puzzling; 

clearly, epigenetic drift is different in its origin from methylation age. Further complicating 

this is the work suggesting that stem cell divisions and mutations are the main drivers of 

cancer. It would be helpful if the authors could add to their discussion these somewhat 

subtle ideas and address their data and its relationship to stem cell changes as well as non-

stem cell changes, attempting to harmonize these somewhat orthogonal ideas.  

 

-A2- 

The reviewer raises key questions in the field and an elaborate discussion of these issues 

would be more appropriate for a review paper than a paper like this based on space 

limitations. One fundamental issue is the distinction between “epigenetic (methylation) 

drift” and “methylation age developed to be tissue independent” (which we assume to be 

the “methylation clock” derived by Horvath). It is not clear to us that these are 

fundamentally different and at least one hypothesis is that the “clock” is simply a subset of 

the sites that show “epigenetic drift”. This subset of sites may be robust because they drift in 

all tissues or perhaps because they are more cleanly measured by the 450K arrays. In any 

case, this clock is not easily measurable across species and since we have no data on this, it 

would be more appropriate to reserve this discussion for another venue.  

It is very difficult indeed to relate either drift or the clock to stem cells because tissues 

examined (by either method) are a mixture of cells (stem/non-stem). The argument that drift 

is related to adult stem cell turnover is elaborated in review papers (e.g. Issa, JCI 2014; 

Ref#16) and Ref#53 provides supportive data for this in the hematopoietic system. To clarify 

our thoughts, the hypothesis is that changes can occur in both differentiated and adult stem 

cells but that the former changes are rapidly lost due to cell turnover. Therefore, the most 

reproducible changes that show linear relationships with age likely originate in adult stem 

cells and are carried into derived somatic/differentiated cells. It is not easy to relate data on 

tissue specific stem cell turnover to tissue specific epigenetic drift because our understanding 

of “adult stem cells” is still evolving and the relevant cells are not exactly defined in every 

tissue. For example, in the large intestine, there are two pools of stem cells, one with high 

turnover and one with low turnover. Which rate would one use for the relevant correlations? 

Our data showing that the large intestine is among the highest “drifters” are consistent with 

the idea that the proliferative stem cells are responsible for day to day activities and the 

quiescent ones perhaps reserved for injury repair. Similar data can be found in the 

hematopoietic system. This complex issue is important but again, beyond the scope of the 

discussion here (in our opinion).  

 

We have added to the discussion in this regards and now state on page 14 as follows: 

“While we analyze cells and tissues that are a mixture of stem cells and differentiated cells, 

it is likely that the most reproducible changes observed are happening in adult stem cells 

and are carried into differentiated somatic cells16. Changes that are restricted to 



differentiated cells would likely be lost upon cell death and contribute to increasing noise 

with age but not to the most dramatic and reproducible associations between methylation 

and age. The “stemness” origin of methylation drift in the hematopoietic system was 

experimentally established by prior studies53, and differing stem cell turnover rates may 

explain the tissue specificity we observed – highest drift in large intestine for example (high 

stem cell turnover).” 

 

References: 

(Ref#16); Issa, J. P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest. 124, 24-29 

(2014). 

(Ref#53); Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation 

landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413-425 (2013). 

 

-Q3- 

On additional issue is related to the possibility that tissue variation and diversity is related to 

caloric restriction (CR). CR-related changes in the immune response would alter DNA 

methylation profile in blood, potentially acting as a confounder of the blood data presented 

here. Similarly, CR associated differences in histology/pathology (e.g. immune infiltration, 

tissue or cell-type changes in apoptosis, amount and distribution of brown vs. white fat, 

efficacy of digestions, constitutive alterations in metabolism in tissues, etc., etc.) may result 

in potential confounding methylation profiles that would be difficult or impossible to assess 

and control. As noted below, I am concerned that this potential source of confounding has 

not been dealt with adequately. 

 

-A3- 

We agree that tissue variation and diversity could be a confounder of our results. If this were 

true, there should be a large overlap between loci that change with age and loci that show 

cell-type specific methylation. We tested this directly by comparing methylation in 

granulocytes, CD34+ cells and T-cells vs whole blood cells (WBCs). In these analyses (Suppl 

Fig.2), only a small degree of overlap was seen between cell type specific changes and age-

related methylation changes in WBCs. About 90% of age-related loci in WBCs showed no 

evidence of tissue-specific methylation in granulocytes, CD34+ cells or T-cells. Moreover, 

age-related methylation affects both CpG islands (CGIs) and non-CGIs while tissue-specific 

methylation affects predominantly non-CGI sites (Ref#40).Thus, it is likely that the changes 

observed here are independent of tissue composition, as has been found by others (Ref#6). 

However, we acknowledge that it would be useful in future studies to look at this issue 

directly using purified cell populations. 

 

References: 

(Ref#40); Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human 

genome. Nature 500, 477-481 (2013).  



(Ref#6); Bell, J. T. et al. Epigenome-wide scans identify differentially methylated regions for 

age and age-related phenotypes in a healthy ageing population. PLoS Genet. 8, e1002629 

(2012). 

 

We modified the text on page 5-6 as follows: 

“Moreover, age-related methylation affects both CGIs and non-CGIs while tissue-specific 

methylation affects predominantly non-CGI sites40. Thus, it is likely that the changes 

observed here are independent of tissue composition.” 

 

We modified the text on page 13 as follows: 

“Additionally, DNA methylation studies in pure cell populations would better address 

potential cell-specific effects on the methylation drift.” 

 

Regarding the histology/pathology, all animals/humans were healthy (diseases-free) as 

described in the sample section. 

 

We modified the text on page 16 as shown below: 

“All animals and human subjects were clinically healthy (disease-free) at the time of sample 

collection.” 

 

Finally, we used 15 genes showing age-related changes in WBC and observed the effects of 

CR on their methylation drift in multiple tissue types as well. Therefore, we believe that the 

issue of tissue/cell specificity as a confounder has limited effects, while the impact of CR is 

variable depending on tissue type.  

 

We modified the text on page 12 as follows: 

“These data also proved that age-related methylation changes occur in multiple tissues and 

the effect of tissue composition is limited.” 

 

-Q4- 

The examination of expression shows a limited, but significant, association of expression 

with drift, using data from the literature. While interesting, why did the authors not actually 

use the actual samples to study expression? Direct interrogation would seem preferable.  

 

-A4- 

We examined direct expression correlations in a limited number of samples (liver, see Fig. 6) 

but the study would be considerably more complex if we had analyzed expression in all 

samples (the paper examines methylation in a total of 427 samples tested). Arguably, finding 

correlations with publicly available data generated by others increases the 

validity/generalizability of the findings (Suppl Fig. 3 and 4).  

 



-Q5- 

Assuming that the differences in expression reported are real, do the authors suppose that 

this reflects a small number of cells with large differences in methylation as opposed to the 

action of the quite small changes in a large number of cells? Just how would they propose 

that these changes arise, given that this is supposed to be related to “drift”? One or two loci 

with differing methylation seem inadequate to change expression patterns as globally as is 

implied here. 

 

-A5- 

This is an important point. Our current findings and previous data suggested that drift 

represents small heterogeneous methylation changes in a large number of cells. We have 

previously shown by bisulfite PCR cloning/sequencing that methylation of a few CpG sites 

randomly distributed at multiple alleles correlates with profound effects on gene expression 

for some genes (Ref#44). We are in the process of analyzing this issue further but we feel this 

is beyond the scope of the current manuscript (which is already very large). 

 

Reference: 

(Ref#44); Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation 

changes in mice. Genome Res. 20, 332-340 (2010). 

 

-Q6- 

Specific issues: 

While the examination of the separated blood cell types alone is of interest, it is not clear 

how this work was actually done. The number of age-related methylation sites for whole 

blood differs for each cell subtype comparison; the reason for this is unclear. Further, as 

there are numerous different subtypes of “T cells”, the analysis of these cells is less 

compelling. It is known that the aging immune system changes in its character and 

composition and as a result, one would expect this to affect the analysis. Using the limited 

data presented to assert that there is no confounding and then to ignore potential subtype 

effects is inadequate.  

 

-A6- 

The revised manuscript now includes detailed information about sample collection and 

actual analyses. 

 

We modified the text on page 16 as follows: 

“Human granulocytes were separated by gradient centrifugation to ~98% purity. Polyclonal 

activated T cells were obtained from the mononuclear cell fraction and in vitro expanded 

using Human T-Activator CD3/CD28 Dynabeads (Gibco).” 

 

We modified the text on page 5 as follows: 



“To assess the effects of blood composition on age-related methylation status detected in 

whole blood, we performed DREAM methylation analysis using purified subpopulations of 

blood cells: granulocytes (n=6), CD34+ cells (n=2) and T-cells (n=3), and compared these to 

whole blood samples (n=16). We detected 222, 1045 and 1923 sites significantly hyper- or 

hypo-methylated (methylation differences ≥2%, sequence depth ≥100 reads in each site, 

FDR<0.05) in granulocytes, CD34+ cells and T-cells, respectively, compared to the whole 

blood. A limited overlap of 0.2%-10% between these cell-type specific sites and the ARM 

sites determined using whole blood suggested that age-related methylation drift cannot be 

explained by variability in blood cell subtypes (Supplementary Fig. 2 and Supplementary 

Table 9).” 

 

We modified the legend of Suppl Fig. 2 as follows: 

“Supplementary Figure 2 | A limited effect of blood composition on age-related 

methylation. Area-proportional Venn diagrams of overlapped CpG sites between sites 

showing age-related methylation drift in whole blood and sites identified as differentially 

methylated in blood cell subtypes compared to whole blood. Red number represents the 

number of sites overlapping. Balloon shows the percentage of overlapped sites of age-

related sites in whole blood. To identify the differentially methylated sites between whole 

blood and each blood cell type, we used sites with sequencing depth ≥ 100 reads in DREAM 

data among samples. Then, we compared the average of methylation % between the whole 

blood (n=16; age; 0-86y) and each blood cell type (granulocytes; n=6; age; unknown, CD34+ 

cells; n=2; age; unknown, T-cells; n=3; age; 19-21y) in each site and defined sites with 

methylation differences ≥2% (FDR<0.05) as differentially methylated sites. A Chi-square test 

using 2X2 tables (Supplementary Table 9) was used to calculate p-values for the significance 

of the overlaps. ” 

 

We agree with the comment related to the blood cell subtype composition. It is known that 

the proportion of cell subtypes changes with age (Ref#A) and that each cell type has a 

specific methylation status (Ref#B). However, it is also true that age-related methylation 

drift can be detected using whole blood as shown in numerous publications (Ref #6-9). The 

CR-induced delay in transition to a more aged-like cell proportion also supports defining age-

related methylation drift in whole blood. The concept that age-related methylation 

correlates with age in whole blood cell samples is still widely accepted. Although we did not 

compare the age-related methylation among blood cell subtypes, our comparisons support 

the contention that cell type-specific methylation patterns have limited effects on age-

related methylation found in whole blood cells (as shown in Suppl Fig. 2). Moreover, age-

related methylation affects both CGIs and non-CGIs while tissue-specific methylation affects 

predominantly non-CGI sites (Ref#40). Our data, together with the previous reports, prove 

that there are limited effects on aging to evaluate the aging/CR effects on DNA methylation 

status by using whole blood cells. 

 



Reference: 

(Ref#A); not in the text; Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is 

critical in epigenome-wide association studies. Genome Biol. 15, R31 (2014). 

(Ref#B); not in the text; Reinius, L. E. et al. Differential DNA methylation in purified human 

blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE 7, 

e41361 (2012). 

(Ref#6); Bell, J. T. et al. Epigenome-wide scans identify differentially methylated regions for 

age and age-related phenotypes in a healthy ageing population. PLoS Genet. 8, e1002629 

(2012). 

(Ref#7); Horvath, S. et al. Aging effects on DNA methylation modules in human brain and 

blood tissue. Genome Bio.l 13, R97 (2012). 

(Ref#8); Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of 

human aging rates. Mol. Cell 49, 359-367 (2013). 

(Ref#9); Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 

R115 (2013). 

(Ref#40); Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human 

genome. Nature 500, 477-481 (2013).  

 

We modified the text on page 5-6 as follows: 

“Moreover, age-related methylation affects both CGIs and non-CGIs while tissue-specific 

methylation affects predominantly non-CGI sites40. Thus, it is likely that the changes 

observed here are independent of tissue composition.” 

 

-Q7- 

In suppl Table 7 it would be useful to know how many genes were detected by prior work 

that were not detected by DREAM analysis in the current manuscript. 

 

-A7- 

We have added this information to a new version of the former Suppl Table 7, now Suppl 

Table 10. We also provided a new supplementary Table 11 showing 2x2 contingency tables 

of genes overlapping to calculate p-values by Chi-square test. 

 

We added the following columns in Suppl Table 10 and filled them with the number of genes: 

“Genes hypermethylated by only DREAM” and “Genes hypermethylated in only prior study”. 

 

We provided a new Suppl Table as follows: 

“Supplementary Table 11 | Hypermethylated ARM genes detected by DREAM and in prior 

studies.” 

 

-Q8- 

Suppl Fig 3 could use some additional explanation of the numbers. For example, the 



denominators in each comparison appear to be the number of gene promoters with 

sequence data (I believe). If correct this should be in the legend. Is this all of the promoters 

with high-quality data in each data set? It is difficult to actually understand how the genes 

are chosen for this analysis. 

 

-A8- 

The numbers show the number of promoter genes with high-quality data in each DREAM 

data set. We counted the number of genes using human homologs of mouse and monkey 

genes. The denominators represent detectable genes by matching human homologous gene 

name in each comparison. The revised legend for Suppl Fig.3 (now Fig 2), now includes an 

explanation of the numbers. 

 

We modified the legend of Fig. 2 as follows: 

“Figure 2 | Methylation analysis by DREAM in mouse, monkey, and human DNA. Area-

proportional Venn diagrams of overlapping gene promoters (-1kb<TSS<+500bp) showing 

age-related methylation drift in whole blood in each combination. The denominators 

represent the number of homologous genes with high-quality sequence data (sequencing 

depth ≥ 100 reads in 75% of cases) which are detectable between two species in each 

comparison. We counted the number of genes using human homolog gene names of mouse 

and monkey genes in each comparison. A Chi-square test using 2X2 tables (Supplementary 

Table 15) was used to calculate p-values for the significance of the overlaps. p-values are 

indicated on the right side.” 

 

-Q9- 

The pyrosequencing data reporting methylation levels in newborns through elderly people is 

poorly presented. It is very difficult to actually figure out how many subjects were studied 

(Suppl Table 1) and there is no description of how these were chosen and were they come 

from that I can find. The statistical variability in the data used in this analysis is nowhere 

described (the mean is given but no SD). I also would be concerned about the possibility of 

additional confounding by cell type in this analysis; for example, early gestational age 

newborns have significant levels of CD71 positive nRBCs that will have a unique methylation 

profile which is not controlled for in this analysis. The data shown for the linear 

extrapolation is not impressive; cell composition should be better accounted for in the 

analysis. 

 

-A9- 

The “number of samples” section in Supplementary Table 1 has been modified. We clarified 

the gene selection for pyrosequencing assays in Suppl Table 16. We also show a summary of 

the samples studied in each analysis in Suppl Table 16. We included SEM as an indicator of 

variability of the data in Suppl Table 17, 18 and 19. 

 



We provided a new Suppl Table as follows: 

“Supplementary Table 16 | Samples used in each analysis and gene selection for 

pyrosequencing assays and gene expression assays.” 

 

We modified the text on page 7 as follows: 

“We selected genes based on age-related drift detected in at least one species 

(Supplementary Table 16) and separately based on prior publications20,26-28,44.” 

 

To answer the reviewer’s specific question, we calculated a Pearson correlation matrix 

comparing cord blood samples for pyrosequencing data (sample size; n=13, Suppl Table 3). 

These data suggest a high similarity of methylation status among the samples, although we 

do not have information on the gestational age of the human cord blood samples. Several 

research groups have reported age-related methylation drift using cord blood samples as the 

specimens of earliest time point (Ref#6, 34, 35, 37) and concluded that at least some age-

related changes were not a result of compositional changes in the cell types found in whole 

blood. In addition, a recent study revealed very similar global methylation status between 

cord blood samples and whole blood samples taken from the same individuals three years 

later (Ref#36). Moreover, tissue (cell type) specific methylation mainly occurred outside CGIs 

(Ref#40). Our pyrosequencing assays were performed only for promoter regions at CGI or 

CpG density high regions to detect the age-related methylation drift. Taken together, this 

information leads us to believe that cell type composition has limited effects on age-related 

methylation. 

 

References: 

(Ref#6); Bell, J. T. et al. Epigenome-wide scans identify differentially methylated regions for 

age and age-related phenotypes in a healthy ageing population. PLoS Genet. 8, e1002629 

(2012). 

(Ref#34); Alisch, R. S. et al. Age-associated DNA methylation in pediatric populations. 

Genome Res. 22, 623-632 (2012). 

(Ref#35); Florath, I., Butterbach, K., Muller, H., Bewerunge-Hudler, M. & Brenner, H. Cross-

sectional and longitudinal changes in DNA methylation with age: an epigenome-wide 

analysis revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet. 23, 1186-1201 

(2014). 

(Ref#37); Heyn, H. et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl 

Acad. Sci. U S A 109, 10522-10527 (2012). 

(Ref#36); Herbstman, J. B. et al. Predictors and consequences of global DNA methylation in 

cord blood and at three years. PLoS ONE 8, e72824 (2013). 

(Ref#40); Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human 

genome. Nature 500, 477-481 (2013). 

 

We modified the text on page 4 as follows: 



“We used cord blood to represent age zero in humans. Cord blood samples have been used 

previously for DNA methylation studies in aging6,34-37. DNA methylation profiles in cord 

blood cell specimens can be potentially affected by the presence of nucleated red blood 

cells in case of a low gestational age38,39. This was likely not the case in our study because all 

cord blood samples we tested showed a very high concordance of methylation values 

(Pearson r > 0.95) (Supplementary Table 3).” 

 

References: 

(Ref#38); de Goede, O. M. et al. Nucleated red blood cells impact DNA methylation and 

expression analyses of cord blood hematopoietic cells. Clin. Epigenetics 7, 95 (2015). 

(Ref#39); Bohlin, J. et al. Prediction of gestational age based on genome-wide differentially 

methylated regions. Genome Biol. 17, 207 (2016). 

 

We modified the text on page 5-6 as follows: 

“Moreover, age-related methylation affects both CGIs and non-CGIs while tissue-specific 

methylation affects predominantly non-CGI sites40. Thus, it is likely that the changes 

observed here are independent of tissue composition” 

 

We provided a new Suppl Table as follows: 

“Supplementary Table 3 | Pearson correlation matrix between cord blood samples by 

methylation status detected by 16 pyrosequencing assays.” 

 

-Q10- 

p-values throughout the suppl data reflect false precision (there is no need to show p-values 

to 4-5 significant figures) and the type of statistical test used is not stated (e.g. suppl fig 12, 

13, 14, 15, 16, 17). 

 

-A10- 

We reduced the number of significant figures shown in the p-values and we described the 

statistical tests in figure legends and in the text (Results and Methods section). 

 

We modified the text in the “Method” section on page 20 as follows: 

“p-values for comparisons between sample groups based on age/caloric status in each 

species were obtained using the unpaired t-test with Welch’s correction. A Chi-square test 

using 2X2 tables was used to calculate p-values for the significance of the overlaps.” 

 

-Q11- 

P3 line47 – a reference might be useful for the assertion that 80% of all CpG sites are 

methylated. 

 

-A11- 



We added citations (Ref#4) on page 3 (now line 48). 

 

Reference: 

(Ref#4); Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21 

(2002). 

 

-Q12- 

P3 line 58 – similarly, a reference for epigenetic changes as “initiators” of cancer. 

 

-A12- 

We added citations (Ref#16-18) on page 3 line 58. 

 

References: 

(Ref#16); Issa, J. P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest. 124, 24-29 

(2014). 

(Ref#17); Li, Y. & Tollefsbol, T. O. Age-related epigenetic drift and phenotypic plasticity loss: 

implications in prevention of age-related human diseases. Epigenomics 8, 1637-1651 (2016). 

(Ref#18); Gonzalo, S. Epigenetic alterations in aging. J. Appl. Physiol. (1985) 109, 586-597 

(2010). 

 

-Q13- 

Are there limitations to applications of DREAM across individuals related to SNPs? If so, how 

is this dealt with? This likely introduces issues in comparison across individuals. 

 

-A13- 

We modified the text on page 17 as follows: 

“Potential individual SNPs at target CCCGGG sites would not affect the data analysis. Since a 

SNP will destroy the SmaI/XmaI target site, the polymorphic allele would not be included in 

the analysis. In the case of a homozygous SNP, the CpG site of the affected individual would 

not be represented.” 

  



Reviewer #2 (Remarks to the Author): 

 

The authors examine changing patterns of DNA methylation and their association with age 

from multiple species and tissues as well the effects of caloric restriction on methylation.  

 

-Q14- 

1. While the conclusions drawn from their analysis are potentially exciting, I am concerned 

that the initial survey of methylation sites on which the rest is based is underpowered. The 

authors should consider a power calculation for the comparison of two binomial samples. 

The choice of p0 and p1 could be based on numbers provided in lines of 84-85 of the 

manuscript. Selecting appropriate size and power for the tests is somewhat arbitrary but, 

the size of the test should account for multiple testing and alpha=10^-4 would be a minimal 

standard and alpha=10^-6 would be adequate. Whether the authors aim for a higher 

powered study (power=0.8) or modest power (0.5), I believe that the calculation will speak 

for itself.  

 

-A14- 

Following the suggestion of the reviewer, we performed a power calculation using p1 and p2 

values for methylation ratio of young group and old group, respectively. All values of power 

were found as 1.0 in all comparisons in each species. We further calculated the sample sizes 

(coverage of reads per CpG site in each group) using alpha=1e-6 and power=0.8 to get the 

minimal coverage of reads needed in all cases. Since the numbers of most variable sites used 

in computing p1 and p2 for mouse, monkey, and human were derived from high-quality data 

(Sequencing depth ≥100 reads; independent events), the number of events used in the paper 

exceed the sample size required in all cases as shown in Suppl Table 4. Finally, a lower power 

would underestimate the significance of our findings. Thus, we are confident that the results 

reported for age and CR effects are statistically significant. 

 

We modified the text on page 5 as follows: 

“The sample sizes for all comparisons were sufficient to give statistical power >0.8 

(Supplementary Table 4).” 

 

We provided a new Suppl Table 4 as follows: 

“Supplementary Table 4 | Power and sample size calculations for methylation difference 

between young and old samples.” 

 

-Q15- 

2. The statistical methods applied to these are poorly described in places and misapplied in 

others. The authors compare methylation drift across species (lines 112-123). Calculation of 

the overlap between human and monkey sites is incomplete - the authors should construct 

the full 2x2 table (with human M+/M- on one margin and monkey M+/M-) on the other. It is 



not clear why the author believe the analysis is "confounded" and not clear how they 

derived the p-value. 

 

-A15- 

Following the reviewer’s suggestions, we described the statistical methods in the text (as 

follows) and figure legends (for Fig. 2) (as mentioned earlier in the response to reviewer#1 -

Q8-). We calculated the significance of overlaps among species (Suppl Table 15) using 

contingency 2x2 tables and Chi-square test. We deleted the sentence which had 

“confounded” to avoid confusion. 

 

We provided a new Suppl Table 15 as follows: 

“Supplementary Table 15 | Hypermethylated ARM sites overlapping among species.” 

 

We modified the legend of Fig. 2 as follows: 

“Figure 2 | Methylation analysis by DREAM in mouse, monkey, and human DNA. Area-

proportional Venn diagrams of overlapping gene promoters (-1kb<TSS<+500bp) showing 

age-related methylation drift in whole blood in each combination. The denominators 

represent the number of homologous genes with high-quality sequence data (sequencing 

depth ≥ 100 reads in 75% of cases) which are detectable between two species in each 

comparison. We counted the number of genes using human homolog gene names of mouse 

and monkey genes in each comparison. A Chi-square test using 2X2 tables (Supplementary 

Table 15) was used to calculate p-values for the significance of the overlaps. p-values are 

indicated on the right side.” 

 

We modified the text in the “Method” section on page 20 as follows: 

“A Chi-square test using 2X2 tables was used to calculate p-values for the significance of the 

overlaps.” 

 

-Q16- 

The authors make frequent use of hierarchical clustering to support their conclusions. There 

are many potential confounders that could cause samples to cluster together. The choice of 

animals and methylation sites used to address different questions is different for every 

analysis and it is difficult to evaluate where confounding might be a problem.  

 

-A16- 

We agree with these remarks but point out that our conclusions are based on statistical 

differences (for each age group/caloric status) and age predictions from methylation status, 

not on clustering assays. We simply used hierarchical clusters to illustrate the trends of 

methylation status by age and the attenuation of aging by caloric restriction. 

We agree that there are potential confounders and discuss earlier the issue of tissue 

composition. The problem of potential confounders is exactly why we examined multiple 



species and multiple tissues – all leading to the same conclusions. To study all confounders in 

this data set is not possible and in fact to design a study that would account for all possible 

confounders is not feasible as it would require the use of completely matched animals (e.g. 

an exceedingly large number of cloned animals) housed and managed in an identical 

fashion. It is even more difficult to study all confounders in humans because of the huge 

heterogeneity. 

In response to the choice of animals and methylation sites used, we clarified and 

summarized the sample sizes and genes tested in Suppl Table 16. We began with 10 

homologous genes to study the association between lifespan and methylation rate among 

species by pyrosequencing. To increase the accuracy of our age prediction we then increased 

the number of genes to 24 (14 in humans). To study the tissue specificity of CR effects in 

mice, we used 12 genes that showed age-related hypermethylation in mouse whole blood. 

This is not all 24 genes tested in mouse whole blood, however, we also provided clustering of 

whole blood using the set of 12 genes (Suppl Fig. 14). We believe that this is a reasonable 

approach to evaluating tissue specificity. 

 

We provided a new Suppl Table as follows: 

“Supplementary Table 16 | Samples used in each analysis and gene selection for 

pyrosequencing assays and gene expression assays.” 

 

-Q17- 

The conclusions of the study are of great interest but the underlying logic for different 

comparisons is not clearly explained and can be confusing to follow.  

 

-A17- 

In the revised manuscript we have improved our explanations (in Suppl Table 1, 2 and newly 

provided Suppl Table 16 as shown in responses of -A9- and- A16-) for different comparisons. 

 

We provided a new Suppl Table as follows: 

“Supplementary Table 16 | Samples used in each analysis and gene selection for 

pyrosequencing assays and gene expression assays.” 

 

  



Reviewer #3 (Remarks to the Author): 

 

-Q18- 

Maegawa and colleagues hypothesize that DNA methylation changes with age (methylation 

drift) are a determinant of lifespan. To test this they collect age, gene expression and DNA 

methylation data from mice, monkeys, and humans. Some of the mice and monkeys had a 

caloric restriction (CR), a known positive factor for lifespan. The authors have collected 

excellent data but unfortunately, their statistical analysis has some major flaws: 

 

-A18- 

We have carefully revised the statistical analyses in the current version of our manuscript.   

 

-Q19- 

Age-related methylation correlates with lifespan: 

They claim that the rate of methylation drift is associated with lifespan. However, their 

correlation of -0.99 comes from three data points. The two variables are (i) the log 

maximum lifespan of a mouse (~5yr), monkey (~70yr) and human (~100yr) (ii) the log of 

methylation rate in %/year. It is unclear to me where the longevity numbers come from. The 

latter number was derived by first collapsing 10 measures of methylation into an average, 

and then regressing methylation on age for each mouse, monkey, and human. The authors 

should employ a random effect model to handle the 10 repeated measures of methylation 

within subjects, rather than getting the average across genes. More importantly, I would 

advise the conclusions regarding this association be tempered since the result is based on 

three observations and is thus speculative. It would be possible to fit one multilevel model 

including data from all 10 genes across all species, including species as a fixed effect with an 

interaction 

term for age allowed to give the difference in methylation rate between species. 

 

-A19- 

We thank the reviewer for this helpful suggestion. We have recalculated methylation drift 

using  

an R package lme4 (Ref#64) to build a multilevel model including data from all 10 genes 

across all species, including species as a fixed effect with an interaction term for age allowed 

to give the difference in methylation rate between genes and species. The results are shown 

in Fig. 3 and Suppl Table 20. We have calculated a multilevel linear mixed-effects model with 

genes and species as group effects. Using The Animal Ageing and Longevity Database, we 

restated the maximum longevity of the three species (mouse, 4 years; monkey, 40 years; 

human, 122.5 years) (Ref#29-31). The source for these ages is now described in the text (as 

follows). The overall results and conclusions remain unchanged (and some of the 

associations show even greater significance using this analysis). 

 



 

We modified the text on page 8 as follows: 

“We employed a multilevel linear mixed effect model to calculate methylation drift at 10 

homologous genes and obtained slopes representing methylation drift per year in each 

species (Supplementary Table 20). The drift rates (mean±SEM) were 4.1±1.2%/year in mice, 

0.34±0.14%/year in monkeys and 0.10±0.02%/year in humans (Fig. 3a). Methylation drift 

was thus inversely proportional to longevity (Fig. 3b). ” 

 

We modified the text on page 18 as follows: 

“Age-related methylation drift. 

We used an R package lme464, to build a multilevel mixed linear model including data from 

all 10 hypermethylated ARM genes homologous across all three species, including species as 

a fixed effect with an interaction term for age allowed to give the difference in methylation 

rate between genes and species.” 

 

Reference: 

(Ref#64); Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects 

Models Using lme4. J Stat Softw 67, 1-48 (2015). 

 

We modified the text on page 4 as follows: 

“The maximum longevity of mice, rhesus monkeys and humans is 4, 40 and 122.5 years, 

respectively (The Animal Ageing and Longevity Database)29-31” 

 

References: 

(Ref#29); Miller, R. A., Harper, J. M., Dysko, R. C., Durkee, S. J. & Austad, S. N. Longer life 

spans and delayed maturation in wild-derived mice. Exp. Biol. Med. (Maywood) 227, 500-

508 (2002). 

(Ref#30); Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus 

monkeys from the NIA study. Nature 489, 318-321 (2012). 

(Ref#31);  llard, M.,   bre,  .,  obine, J.-M. & Calment, J. Jeanne Calment : from Van Gogh's 

time to ours, 122 extraordinary years.  (W.H. Freeman, 1998). 

 

-Q20- 

CR delays DNA methylation drift: 

The authors find CR is related to methylation drift using a two-stage process. For each CpG 

site, the authors first take the mean difference (across individuals) in methylation between 

CR and AL animals. They then find the change in methylation per year in AL animals and 

report the correlation between this and the average difference. It is unclear to me why the 

x-axis of Figure 3c is AL animals only, and not both. Further, the authors could have tested 

whether CR was related to methylation drift for each CpG site by a regression of 

methylation on age with an interaction for CR allowed. These regression results would 



provide p-values for each CpG site, which could be used to investigate which genes had 

differential methylation drift by CR group. 

 

-A20- 

To reveal the effects of CR on age-related DNA methylation status, we purposefully used only 

AL animals on the x-axis (Figure 3c, now Figure 4c). Our reason for this is now explained in 

the text. 

 

We modified the text at page 9 as follows: 

“To reveal the CR effect, we compared methylation differences in CR versus AL animals to 

the rate of methylation drift with age in AL mice and found a strong negative correlation 

(Spearman r=–0.87, p<0.001, two-tailed, Fig. 4c)” 

 

The reviewer makes an excellent point regarding testing the effects of CR on methylation 

drift. In response, we have now calculated p-values for each CpG site and investigated which 

genes show a CR effect on methylation drift. The list of these genes is provided in Suppl Table 

21. We included this gene information in Supplementary Table 12 (for mice) and 13 (for 

monkeys) and explained in the text as follows. 

 

We provided the Suppl Table 21 as follows: 

“Supplementary Table 21 | The list of genes for which the methylation rate by age is 

significantly affected by CR." 

 

We modified the legend of Suppl Table 12 and 13 as follows: 

“*genes overlapping with genes listed in Supplementary Table 21.“ 

 

We modified the text on page 9-10 as follows: 

“We investigated whether CR was related to methylation drift by a multiple linear 

regression of methylation on age with an interaction for CR allowed. Based on the p-values 

<0.05 provided by the regression results for each CpG site, we defined genes where age-

related drift was significantly alleviated by CR (Supplementary Table 21). As expected, 

almost every gene detected by this model (Supplementary Table 21) was also detected as 

undergoing age-related methylation as listed in Supplementary Tables 12 and 13. Most of 

the genes that showed a significant effect of CR as indicated by negative coefficients 

overlapped with hypermethylated ARM genes and vice versa. (Supplementary Fig. 11 and 

Supplementary Table 21). These data suggest that CR may diminish or eliminate methylation 

changes with age.” 

 

We provided a new Suppl Figure 11 as follows: 

“Supplementary Figure 11 | Overlap between genes affected by CR and genes showing age-

related methylation.” 



 

We modified the text on page 18 in method section as follows: 

“To test the CR effect on aging methylation drift, multiple linear regression for methylation 

with two predictors and their interaction term was performed for each site in DREAM data: 

age (quantitative variable) and diet (qualitative variable with two levels: AL and CR). Taking 

AL as the baseline, if the coefficient for the interaction term is significantly non-zero, it 

indicates CR significantly changes the rate of methylation drift.” 

 

-Q21- 

The authors develop an age prediction model using data from AL mice/monkeys. They use 

this model to predict methylation age in CR mice/monkeys. Ignoring the low sample size this 

is a good idea. Unfortunately, they have set this up in the wrong direction or at least written 

their model incorrectly. They seem to set methylation as the outcome and age as the 

predictor variable but are trying to predict age. For mice they find methylation=0.4*age + 

13. From this, I am not convinced by the authors’ methylation age estimates and 

subsequent findings of lower methylation age in CR animals. 

 

-A21- 

We have deleted the equations from the text to avoid confusion and we have now explained 

how to calculate the predicted age in the legend of Suppl Table 20. 

 

We modified the legend of Suppl Table 20 as follows: 

Formulas for age prediction; 

Age(year) = (1/Slope) x Methylation(%) + (Intercept/Slope) 

 

-Q22- 

Age-related methylation drift is conserved across species: 

The finding that CpG islands where methylation is low in early age tend to see 

hypermethylation with age, and that CpG islands where methylation is high in early age tend 

to see hypomethylation with age could be seen as a regression to the mean. This needs to 

be discussed in more detail. Further, in the p-values for these differences over age (i.e. 

middle of page 4) come from a test which has not been mentioned in the methods section. 

Similarly, the tests regarding the overlap of hypermethylated genes between species at the 

top of page 6 are not explained in the methods, but low p-values are found throughout. 

 

-A22- 

Regression to the mean would imply a certain degree of order and dynamism to the process. 

However, methylation drift can be seen as an erosion of highly organized methylation 

patterns: focal unmethylated/methylated status of CpG islands, distinctly different from the 

global methylated status of CpG sites in CpG poor regions. Focal 

hypermethylation/hypomethylation (and global hypomethylation) occurring in aging and 



accentuated/accelerated in cancer is a regression to the mean only superficially. Indeed, we 

previously reported age-related methylation changes (increased and decreased patterns in 

promoter regions) as increased epigenetic noise (with increased variabilities in older 

populations) in multiple tissue types in mice (Ref#20, 44). The discussion section of the 

revised manuscript now includes more detailed description of the methylation changes as 

follows: 

 

We modified the text on page 8 as follows: 

“Hypermethylation and hypomethylation occurring with aging could be seen as a regression 

to the mean. We previously reported age-related methylation changes (increased and 

decreased patterns in promoter regions) showing increased epigenetic noise (with increased 

variabilities in older populations) in multiple tissue types in mice20,44.” 

 

We modified the text on page 13 as follows: 

“Changes in DNA methylation occur during the aging process in mammals, and this age-

related change in DNA methylation is accelerated in tumorigenesis. Methylation drift can be 

seen as an erosion of highly organized methylation patterns: focal unmethylated status of 

CGIs, distinctly different from the global methylated status of CpG sites in CpG poor 

regions40. Consistent with our previous studies20,44, we detected age-related methylation 

drift in multiple tissue types.” 

 

References: 

(Ref#20); Maegawa, S. et al. Age-related epigenetic drift in the pathogenesis of MDS and 

AML. Genome Res. 24, 580-591 (2014). 

(Ref#44); Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation 

changes in mice. Genome Res. 20, 332-340 (2010). 

(Ref#40); Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human 

genome. Nature 500, 477-481 (2013). 

 

As explained in the response to -Q15- (question #2 from reviewer #2), we described how we 

calculated p-values for hypermethylated genes overlapping among species and provided 2X2 

tables. We described how p-values were calculated in the Methods section as follows 

(in ”Statistics” section): 

 

We modified the text on page 20 in method section as follows: 

“p-values for comparisons between sample groups based on age/caloric status in each 

species were obtained using the unpaired t-test with Welch’s correction. A Chi-square test 

using 2X2 tables was used to calculate p-values for the significance of the overlaps.” 

  



Reviewer #4 (Remarks to the Author): 

 

This paper presents epigenetic drift data from mice, monkeys, and humans and concludes 

that it represents a biomarker of lifespan which is attenuated by CR.  

 

-Q23- 

In the introduction, “lifestyle” is used twice (first sentence and last paragraph) to 

characterize CR. I don’t think it reflects a lifestyle for most organisms, including the mice and 

monkeys described in this paper. It would be better to keep the description as an 

“intervention”.  

 

-A23- 

We have deleted “lifestyle” on page 2 and replaced “lifestyle” with “intervention” on page 3. 

 

-Q24- 

Line 252: The lack of a CR effect on telomere length is described as “Strikingly”, but follows 

with a reference that reported the same lack of an effect. Thus, it doesn’t seem so striking.  

 

-A24- 

We deleted the word “strikingly” on page 13. 

 

-Q25- 

Line 285: It states that the monkey studies differed with the control diet, my understanding 

is that it was control and CR diet differences. Thus, the statement here may be an 

oversimplification.  

 

-A25- 

This was corrected in the text as follows. 

 

We modified the text on page 15 (line 327) as follows: 

“The two studies differed substantially in the diets they used, ….” 

 

 

 

 

 

 

 

 

 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

I find the author's resubmission quite responsive to prior review.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have answered all of my concerns and I would advise the paper be accepted for 

publication.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

I find the author's resubmission quite responsive to prior review.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have answered all of my concerns and I would advise the paper be accepted for publication.  
 

Thank you so much for positive comments from Reviewer #1 and Reviewer #3. 

 


